Name:	Date:	MYP Level 4: Algebra I
Lesson 18 Equations Inv	olving a Variable Expression in th	he Denominator
Learning Outcome: I CA	${oldsymbol N}$ find the solution sets for equ	ations with a variable in the
denominator, as well as e	exclude invalid values from the s	solution set.
Openina Eveneira		

Opening Exercise

Nolan says that he checks the answer to a division problem by performing multiplication. For example, he says that $20 \div 4 = 5$ is correct because 5×4 is 20, and $\frac{3}{1/2} = 6$ is correct because $6 \times \frac{1}{2}$ is 3.

a. Using Nolan's reasoning explain why there is no real number that is the answer to the division problem $5 \div 0$.

b. Quentin says that $\frac{0}{0} = 17$. What do you think?

c. Mavis says that the expression $\frac{5}{x+2}$ has a meaningful value for whatever value one chooses to assign to x. Do you agree?

d. Bernoit says that the expression $\frac{3x-6}{x-2}$ always has the value 3 for whichever value one assigns to x. Do you agree?

Exercises 1-2

- 1. Rewrite $\frac{10}{x+5}$ as a compound statement.
- 2. Consider $\frac{x^2-25}{(x^2-9)(x+4)}$.
 - a. Is it permissible to let x = 5 in this expression?
 - b. Is it permissible to let x = 3 in this expression?
 - c. Give all the values of x that are **not** permissible in this expression.

Example 1

Consider the equation $\frac{1}{2x} = \frac{3}{x-5}$.

a. Rewrite the equation into a compound statement.

b. Solve the equation for x, excluding the value(s) of x that lead to a denominator of zero.

Example 2

Consider the equation $\frac{x+3}{x-2} = \frac{5}{x-2}$.

a. Rewrite the equation into a compound statement.

b. Solve the equation for x, excluding the value(s) of x that lead to a denominator of zero.

Exercises 3-8

Rewrite each equation into a compound statement, excluding the value(s) of x that lead to a denominator of zero; then, solve the equation for x.

3.
$$\frac{5}{x} = 1$$

4.
$$\frac{1}{x-5} = 3$$

$$5. \quad \frac{x}{x+1} = 4$$

6.
$$\frac{2}{x} = \frac{3}{x-4}$$

7.
$$\frac{x}{x+6} = -\frac{6}{x+6}$$

8.
$$\frac{x-3}{x+2} = 0$$

Lesson 18 CW/HW

- 1. Consider the equation $\frac{10(x^2-49)}{3x(x+1)}=0$. Is x=7 permissible? Which values of x are excluded? Rewrite as a compound statement.
- 2. Rewrite each equation into compound statements excluding the value(s) of x that lead to a denominator of zero. Then solve the equation for x.
 - a. $25x = \frac{1}{x}$
 - b. $\frac{1}{5x} = 10$
 - c. $\frac{x}{7-x} = 2x$
 - d. $\frac{2}{x} = \frac{5}{x+1}$
 - **e.** $\frac{3+x}{3-x} = \frac{3+2x}{3-2x}$
- 3. Write an equation with the restrictions $x \neq 14$, $x \neq 2$, and $x \neq 0$.

4. Write an equation that has no solution.